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Reparametrization Invariance as Gauge Symmetry
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Reparametrization invariance treated as a gauge symmetry shows some specific
peculiarities. We study these peculiarities both from a general point of view and
by concrete examples. We consider the canonical treatment of reparametrizat ion-
invariant systems in which one fixes the gauge on the classical level by means of
time-dependent gauge conditions. In such an approach one can interpret different
gauges as different reference frames. We discuss the relation between different
gauges and the problem of gauge invariance in this case. Finally, we establish a
general structure of reparametrizat ions and its connection with the zero-
Hamiltonian phenomenon.

1. INTRODUCTION

Many physical theories are formulated in so-called reparametrization-

invariant (RI) form, for instance, models of pointlike relativistic particles,

gravity, and string theory. Formally, reparametrization invariance can be
treated as a gauge symmetry. However, this gauge symmetry shows some

peculiarities, so that it is natural to separate it into a special class of gauge

symmetries. For the same reason one has to be careful when formally applying

recipes extracted from the consideration of gauge symmetries of a different

nature. In all known examples of finite-dimensional RI systems the Hamilto-

nian vanishes on the constraint surface (in field theory cases this may be
not true) in spite of the fact that explicit forms of the reparametrization

transformations in these examples may look different. This issue raises a

question: What is the general structure of such transformations and is there

a definite relation between such a structure and the zero-Hamiltonian phenom-

enon? The zero-Hamiltonian phenomenon in RI theories raises another well-
known problem: What is the time evolution in this case? This question is
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important for the construction of an adequate quantum theory of gravity.

Different aspects of RI systems, especially in the example of general relativity,

have been studied in numerous publications. One may mention, for example,
the papers of Arnowitt et al.,(1] where the problem of the zero-Hamiltonian

in general relativity was first deeply discussed, and the relevant papers of

Kuchar, Hajicek, Isham, and Hartle.(2)

In the canonical schemes under consideration there exists the possibility

to introduce the evolution by means of a time-dependent gauge fixing. Fixing

the gauge in such a manner, we get different evolutions depending on the
selected gauge. Here we meet a question well known in gauge theories: To

what extent does the physical content of a theory depend on the gauge fixing

and what is gauge invariance here? There exist, in fact, two essentially

different points of view on this problem. According to the first one, which

is called the ª localº point of view, the gauge fixing of the reparametrization

gauge freedom corresponds to a certain choice of the reference frame (RF).
At the same time, space±time variables in the Lagrangian have to be identified,

namely with the coordinates of the above RF. The reparametrizations relate

the description of the system in different RF. Thus, one has to admit that

local physical quantities may depend on the choice of the gauge. Another,

ª nonlocalº point of view assumes that there exists a reparametrization-invari-
ant description. Supporters of this position believe that such a description

may be realized if one includes an observer in the frame of the theory. Then

the physical quantities do not depend on the choice of the gauge, which fixes

the reparametrization freedom, and must commute with the corresponding

first-class constraints. Unfortunately, the ª nonlocalº point of view remains,

in the main, declarative. It seems that a clear and convincing realization is
lacking. For an excellent and detailed survey on the subject (and relevant

references) see ref. 3.

In the present paper we discuss the above and some other questions

related to RI theories both from a general point of view and by specific

examples. First we analyze the possibility to fix the reparametrization gauge

freedom on the classical level in the Hamiltonian formulation. The corres-
ponding gauge conditions have to depend on time (on space±time in field

theory case) essentially. In this case the Dirac bracket formalism (4) has to

be modified(5). We apply such a modified approach to the problem under

consideration and derive restrictions on the so-called unitary gauges, in which

an effective Hamiltonian exists and controls the physical variable dynamics.

We analyze relations between different unitary gauges on both the classical
and quantum levels in general and in specific examples. We discuss in this

connection the model of a relativistic particle in detail. In particular, an

explicit relation between the so-called chronological gauge and the proper-

time gauge is presented. We advocate the above-mentioned ª localº point of
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view, and consider several examples where one can compare the RI and non-

RI versions of the same theory. Namely, we study a finite-dimensional theory,

a field theory in a flat space±time, and a theory of the relativistic particle,
all of them both in non-RI and in RI form. Based on the considered examples

we formulate an interpretation which in fact supports the ª localº point of

view and gives a specific treatment for the reparametrization gauge symmetry.

In the final part of the paper, which seems more formal and independent of

the previous part, we study the general structure of the reparametrizations

and its relation to the zero-Hamiltonian phenomenon. As a general result in the
theory of gauge systems, we prove that if some global continuous symmetry

transformation of an action generates a conserved charge which vanishes on

the equation of motion, then such an action obeys a gauge symmetry. Leaning

upon the latter statement, we establish the general structure of the repara-

metrizations (the infinitesimal form), which is responsible for the zero-

Hamiltonian phenomenon.

2. INTRODUCING REPARAMETRIZATION INVARIANCE

The action of a pointlike relativistic particle

S 5 #
1

0

L d t , L 5 2 m ! xÇ 2, x 5 (x m ), xÇ m 5
dx m

d t
, m 5 0, . . . , D

(1)

gives us a simple example of an RI theory. It is invariant under reparametriza-

tions x m ( t ) ® x8 m ( t ) 5 x m ( f ( t )), where f is an arbitrary function obeying

only the following demands: fÇ ( t ) . 0, f(0) 5 0, f (1) 5 1. The reparametriza-

tions can be interpreted as gauge transformations (GT) whose infinitesimal

form is

d x m ( t ) 5 xÇ m ( t ) e ( t ), d L 5
d

d t
[ e (t)L] (2)

where e ( t ) is a time-dependent parameter. An equivalent Lagrangian function

which is adapted to the m ® 0 limit contains an additional variable e and

is of the form

L 5 2
xÇ 2

2e
2 e

m2

2
(3)

Here the infinitesimal form of the reparametrizations is

d x m ( t ) 5 xÇ m ( t ) e ( t ), d e( t ) 5 eÇ ( t ) e ( t ) 1 e( t ) e Ç ( t ), d L 5
d

d t
[ e ( t )L]

(4)
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String theory is of the same nature; its action is invariant under the reparametri-

zations of two variables. Gravity is an example of an RI field theory. The

Einstein action

SE 5 # +E d D 1 1x, +E 5 2 ! 2 g R (5)

is invariant under general coordinate transformations

x m ® x8 m 5 x8 m (x), g m n (x) ® g8m n (x), g8m n (x8) 5
- x l

- x8 m

- x s

- x8 n g l s (x)

These are in fact reparametrizations of D 1 1 space-time variables. They

can be treated as GT,

d g m n (x) 5 D m e n (x) 1 D n e m (x), d +E 5 - m [ e m (x) +E] (6)

where D m is a covariant derivative and e m (x) are GT parametersÐ arbitrary
functions on space±time coordinates.

Any action can be extended to an RI form (6). Consider, for example, a

nonsingular action (similar considerations can be made for any singular

Lagrangian as well)

S 5 #
t2

t1

L(x, xÇ , t) dt, x 5 (xi), i 5 1, . . . , D, xÇ 5
dx

dt
(7)

Let us change t to x0 and then replace the integration variable x0,

x0 5 f(t), f(t1) 5 t1, f(t2) 5 t2 (8)

Thus, we get

SR 5 #
t2

t1

LR(x, xÇ )dt, LR(x, xÇ ) 5 L 1 x,
xÇ

xÇ 0
, x0 2 xÇ 0 (9)

If we keep in mind the relations (8), the action (9) is completely equivalent

to the initial one (7). On the other hand, one can now treat (9) in a new way,

namely, we can forget about (8) and treat x0 as a new independent variable,

so that the total set of variables of the theory is x 5 (x m ) 5 (x0, x).
Let us analyze the relation between the theory with the actions (9) and

(7), in particular, in the Hamiltonian formulation. For the nonsingular theory

(7) one can always solve the equations which define the momenta with respect

to all velocities:

p 5
- L

- xÇ
Þ xÇ 5 c (x, p , t), p 5 ( p i) (10)
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Then the time evolution is generated by the Hamiltonian equations without

any constraints,

h Ç 5 { h , H }, h 5 (x, p ), H 5 1 - L

- xÇ
xÇ 2 L 2 Z xÇ 5 c

5 H (x, p , t)

(11)

In the theory with the action SR there primary constraints appear in the

Hamiltonian formulation. Indeed, let p m 5 ( p 0, p ) be momenta conjugate
to x m ,

p 0 5
- LR

- xÇ 0
5 2 1 - L

- xÇ
xÇ 2 L 2 Z xÇ ® xÇ /xÇ 0, t ® x0

, p 5
- LR

- xÇ
5

- L

- xÇ Z xÇ ® xÇ /xÇ 0, t ® x0

(12)

From the second equation in (12) [taking into account (10)] we get xÇ 5
xÇ 0 c (x, p , x0), whereas xÇ 0 is a primarily inexpressible velocity. Then the first

equation (12) [taking into account (11)] appears to be a primary constraint

f 1 5 p 0 1 H(x, p , x0) 5 0 (13)

Constructing the total Hamiltonian H(1) according to the standard proce-
dure,(4,5) we get

H(1) 5 1 - LR

- xÇ m
xÇ m 2 LR 2 Z xÇ 5 xÇ 0 c (x, p ,x0)

5 l f 1, l 5 xÇ 0 (14)

Thus, the total Hamiltonian vanishes on the constraint surface (on the equa-

tions of motion). No more constraints appear from the consistency conditions.
To fix a gauge we have to impose a new constraint f 2 5 0 so that the matrix

{ f a , f b}, a, b 5 1, 2, is not singular. A natural form of a such a condition

is f 2 5 x0 2 w (x, p , t) 5 0, where the function w (x, p , t) has an essential

t dependence, introduced in the theory, in spite of the fact that the Hamiltonian

is zero. The simplest choice of the gauge condition is (we will call such a

condition the chronological gauge)

f 2 5 x0 2 t 5 0 (15)

The set of second-class constraints (13), (15) explicitly depends on time.

The general method to deal with nonstationary constraints in the canonical
formulation and quantization procedure were first proposed in ref. 5. Similar

results were then obtained by a geometrical approach in ref. 7. The BRST

formulation of the nonstationary constraints case was discussed in ref. 8.

Below we briefly recall the treatment of ref. 5 for systems with nonstationary

second-class constraints.



1946 FuÈ loÈ p, Gitman, and Tyutin

Consider a theory with second-class constraints f a( h , t) 5 0 (where

h 5 (xi, p i) are canonical variables) which may explicitly depend on time t.
Then the equation of motion of such a system may be written by means of
the Dirac brackets if one formally introduces a momentum e conjugate to

the time t and defines the Poisson bracket in the extended phase space of

canonical variables ( h ; t, e ),

h Ç 5 { h , H 1 e }D( f ), f ( h , t) 5 0 (16)

where H is the Hamiltonian of the system and {A, B}D( f ) is the notation for

the Dirac brackets with respect to the system of second-class constraints f .

The Poisson brackets, wherever encountered, are henceforth understood as

in the above-mentioned extended space. The quantization procedure in the

ª quasi-SchroÈ dingerº picture can be formulated in that case as follows. The
variables h of the theory are assigned the operators h Ä , which satisfy the

relations

[ h Ä , h Ä 8] 5 i{ h , h 8}D( f ) ) h 5 h Ä , f ( h Ä , t) 5 0 (17)

and equations of evolution

h ÄÇ 5 { h , e }D( f ) ) h 5 h Ä 5 2 { h , f a}Cab
- f b

- t Z h 5 h Ä
, Cac{ f c , f b} 5 d ab

(18)

One can demonstrate that (17) and (18) are consistent. To each physical
quantity A given in the Hamiltonian formalism by the function A( h , t) there

corresponds a ª quasi-SchroÈ dingerº operator AÄ by the rule AÄ 5 A( h Ä , t); in

the same manner one constructs the quantum Hamiltonian HÄ according to

the classical one H ( h , t). The time evolution of the state vectors C in this

picture is determined by the SchroÈ dinger equation with the Hamiltonian

HÄ 5 H( h Ä , t). The total time evolution results from the evolution both of the
state vectors and one of the operators. It is convenient to analyze such an

evolution in the Heisenberg picture, whose operators h Ï are related to the

operators h Ä as h Ï 5 U 2 1 h Ä U, where U is the evolution operator related to the

Hamiltonian HÏ . Such operators satisfy the equations

h ÏÇ 5 { h , H 1 e }D( f ) ) h 5 h Ï (19)

[ h Ï , h Ï 8] 5 i{ h , h 8}D( f ) ) h 5 h Ï , f ( h Ï , t) 5 0

All the relations (19) together may be considered as a prescription for quanti-

zation in the Heisenberg picture for theories with nonstationary second-class

constraints. The total time evolution is controlled only by the first set of

equations (19) since the state vectors do not depend on time in the Heisenberg
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picture. In the general case such an evolution is not unitary. Suppose, however,

that part of the set of second-class constraints consists of supplementary

gauge conditions, the choice of which is in our hands. In this case we may
try to select these gauge conditions in a special form to obtain unitary

evolution. The evolution is unitary if there exists an effective Hamiltonian

Heff( h ) in the initial phase space of the variables h so that the right side of

the equations of motion (16) may be written as

h Ç 5 { h , H 1 e }D( f ) 5 { h , Heff}D( f ) (20)

In this case [due to the commutation relations (19)] the quantum operators

h Ï obey the equations (we disregard here problems connected with operator

ordering)

h ÏÇ 5 2 i[ h Ï , HÏ eff], HÏ eff 5 Heff( h Ï ) (21)

The latter allows one to introduce the real SchroÈ dinger picture where operators

do not depend on time, but the evolution is controlled by the SchroÈ dinger

equation with the Hamiltonian Heff. We may call the gauge conditions which
imply the existence of the effective Hamiltonians unitary gauges. Remember

that in the stationary constraint case all gauge conditions are unitary.(5) As

is known, (5) the set of second-class constraints can always be solved explicitly

with respect to part of the variables h
*

5 C ( h *), h 5 ( h
*
, h *), so that

h
*

and h * are sets of pairs of canonically conjugate variables h
*

5
(q

*
, p

*
), h * 5 (q*, p*). We may call h * independent variables and h *

dependent ones. In fact, h
*

2 C ( h *) 5 0 is a set of second-class constraints

equivalent to f ( h ) 5 0. One can easily demonstrate that it is enough to
verify the existence of the effective Hamiltonian [the validity of relation (21)]

for the independent variables only. Then the evolution of the dependent

variables which is controlled by the constraint equations is also unitary.

In the situation of main interest here, when the Hamiltonian is propor-

tional to the constraints, one can put H 5 0 in equations (19). Thus, the ª quasi-

SchroÈ dingerº picture and the Heisenberg one coincide. The time evolution is
unitary in this case if the following equations hold:

h Ç 5 { h , e }D( f ) 5 2 { h , f a}Cab
- f b

- t
5 { h , Heff( h )}D( f ) (22)

Let us analyze the theory (2.9) in the gauge (15) using the above
consideration. The matrix { f a , f b} is simple in this case: { f a , f b} 5
antidiag ( 2 1, 1), Cab 5 { f b , f a}. The Dirac brackets between the independent

variables x, p are reduced to the Poisson ones,

{xi, xj}D 5 { p i , p j}D 5 0, {xi, p j}D 5 d i
j (23)
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The time evolution of these variables is given by the equations

xÇ 5 2 {x, f a}Cab f Ç b 5 {x, H }, p Ç 5 2 { p , f a}Cab f Ç b 5 { p , H }

(24)

where H is the Hamiltonian of the theory (7) and at the same time it is the

effective Hamiltonian in our definition. This means that in the chronological

gauge the dynamics of the original nonsingular theory is reproduced.
Let us consider instead of (15) a more general gauge fixing f 2 5 x0 2

w (x, p , t) 5 0. To get conditions on the function w which make the gauge

unitary we restrict ourselves to the free particle case, where H from (11) is

p2/2m. In this case { f a , f b} 5 antidiag( 2 K, K ), Cab 5 K 2 2{ f b , f a}, K 5
(1 2 ( p i /m) - i w ). The nonzero Dirac brackets between the independent

variables x, p are

{xi, xj}D 5 (mK ) 2 1 1 - w
- p i

p j 2
- w
- p j

p i 2 , {xi, p j}D 5 d i
j 1 (mK) 2 1 p i - j w

(25)

According to (22), these variables obey the following equations:

xÇ 5 2 {x, f a}Cab f Ç b 5 (mK) 2 1 p w Ç , p Ç 5 2 { p , f a}Cab f Ç b 5 0 (26)

On the other hand, if the effective Hamiltonian Heff does exist (unitary gauge),

one can write

xÇ i 5 {xi, Heff}D 5 (mK ) 2 1 1 - w
- p i

p j 2
- w
- p j

p i 2
3 - jHeff 1 [ d i

j 1 (mK ) 2 1 p i - j w ]
- Heff

- p j

(27)

p Ç i 5 { p i , Heff}D 5 2 ( d i
j 1 (mK ) 2 1 p j - i w ) - jHeff

Comparing (26) with (27), we get the following conditions on Heff:

- jHeff 5 0,
- Heff

- p i

5 p i (mK ) 2 1 1 w Ç 2
- Heff

- p i

- i w 2 (28)

The first equation (28) means that Heff does not depend on x and the second

one results in the condition

1 p j
-

- p i
2 p i

-
- p j 2 Heff 5 0 (29)



Reparametrization Invariance as Gauge Symmetry 1949

which means that Heff depends only on p 2. Thus, Heff 5 Heff( p
2, t). Using

this information in the second equation (28), we get

2m
- Heff

- p 2 5 w Ç (30)

Thus, w Ç is a function on p 2 and t only. That leads to the following structure:

w (x, p , t) 5 x (x, p ) 1 c ( p 2, t) (31)

where x and c are arbitrary functions on the indicated arguments. The effective

Hamiltonian in this case can be expressed via the function c ( p 2, t) only:

Heff 5
1

2m # c Ç ( p 2, t) d p 2 (32)

As an example of a gauge condition that is nonlinear in time t we consider

f 2 5 x0 2 t 2
ma

2 p
t2 5 0 (33)

where for simplicity we have selected the one-dimensional case, i.e., the

Hamiltonian of the initial nonsingular theory is H 5 p 2/2m. The previous

consideration is valid in this case; thus, (33) is an unitary gauge which
generates an effective Hamiltonian of the form

Heff 5
p 2

2m
1 p at (34)

If we suppose that the initial nonsingular action (7) corresponds to a theory

in an inertial reference frame, then the chronological gauge (15) returns us

to the description in such a frame, whereas the gauge (33) corresponds to
the description from the point of view of an accelerating (with acceleration

a) frame.

Let us turn to the question of physical quantities in the RI theory under

consideration. It is known (4,5) that in conventional gauge theories physical

quantities which are defined by functions on the phase space have to commute

with first-class constraints on the mass shell (Dirac’ s criterion). What kind
of restriction does this criterion impose on the physical quantities in our

case? Due to the constraint (13), the physical quantities which are given by

functions on the phase space of variables x m , p m can always be expressed

via functions of the form A 5 A(x0, h ), h 5 (x, p ). The condition of
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commutativity of such functions with the first-class constraint (13) on the

mass shell then results in

{A, f 1} 5
- A

- x0 1
- A

- h
{ h , H } ’ 0 (35)

Remembering that the equations of motion in the theory under consideration

have the form

h Ç 5 { h , H(1)} 5 l { h , H }, xÇ 0 5 {x0, H(1)} 5 l (36)

we may rewrite (35) as

- A

- x0 xÇ 0 1
- A

- h
h Ç 5

dA

dt
’ 0 (37)

Thus, the Dirac criterion admits as physical functions only those which
present integrals of motion. We believe that the RI theory under consideration

in the chronological gauge (15) has to coincide with the initial nonsingular

theory (7), in which all the functions of the form A 5 A(t, h ) are physical.

Thus, if one accepts the Dirac criterion, then an essential part of real physical

quantities of the initial nonsingular theory (7) is lost and the RI version is

not equivalent to the initial theory.
The above consideration looks even more transparent in the case of field

theory. Let us consider, for example, a theory of a scalar field in a flat

space±time. The action of the theory written in an inertial RF has the form

S 5 # +d D 1 1 x 5 # F 1

2
h m n w , m w , n 1 F( w ) G d D 1 1x (38)

where h m n 5 diag(1, 2 1, . . . , 2 1), F( w ) are some terms independent of the

derivatives of w , and w , m 5 - w / - x m . In (38) let us change x m to y m and then

let us rewrite the integral on the RHS of (38) by doing the substitution

y m 5 y m (x). Thus, we get

SR 5 # +Rd D 1 1x 5 # F 1

2
g m n w , m w , n 1 F( w ) G ! 2 gd D 1 1x (39)

where

g m n 5 a m
a a n

b h a b , a m
a y a

, n 5 d m
n , g 5 det|g m n | 5 2 e2, e 5 det|y m

, n |

(40)

and g m n is the inverse of g m n . If one treats the y m as four new scalar fields,
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then the theory becomes a gauge one, with the corresponding gauge transfor-

mations having the form

d y m 5 y m
, a d z a , d w 5 - a w d z a (41)

where d z (x) are D 1 1 x-dependent parameters of the gauge transformations.

To see the relation between the theories (38) and (39) we construct their

Hamiltonian versions as in the previous finite-dimensional case. Let us start

with the gauge theory (39). Using the relations

- e

- yÇ a
5 ea0

m ,
- g m n

- yÇ a
5 2 2g0 m a n

a (42)

we introduce the canonical momenta:

p 5
- +

- w Ç
5 ea0

m a0
n g

m n w Ç 1 ea0
m ai

n g
m n w , i

p m 5
- +

- yÇ m
5 2

1

2
ea0

m a0
n a

0
r g

n r w Ç 2

2 eai
m a0

n a
0
r g

n r w Ç w , i 1 e F 1

2
a0

m ai
n a

i
r 2 ai

m ai
n a

0
r G g n r w , i w , j 1 ea0

m F( w )(43)

Equations (43) allow one to express only the velocity w Ç via fields and

momenta; velocities yÇ m remain inexpressible,

w Ç 5
p 2 ea0

m ai
n g

m n w , i

ea0
m a0

n g
m n (44)

Thus, the primary constraint f 1 5 0 appear:

f 1 m 5 p m 1 a a
m ( y)* a ( y) (45)

where

*0( y) 5
p 2

2eg00 2
g0i

g00 w , i p 2
e

2

g ij

g00 w , i w , j 2 eF( w ) (46)

*i (y) 5 w , i p , g ij 5 2
g0ig0j

g00 1 gij (47)

The density of the total Hamiltonian is

*(1) 5 l m f 1 m , l m 5 yÇ m (48)

where the inexpressible velocities yÇ m appear as Lagrange multipliers. No

more constraints appear and f 1 are first-class constraints. A possible form
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of the gauge conditions is

f m
2 5 y m 2 f m (x) 5 0, Z - f

- x Z Þ 0 (49)

Together with the primary constraints they form a set of second-class con-

straints, which can be written in the equivalent form F 5 0, where

F 5 H p m 1 a a
m ( f(x))* a ( f(x)) 5 0

y m 2 f m (x) 5 0
(50)

One can select Q 5 ( w , p ) as independent variables. The Dirac brackets

between them are

{ w , p }D( F ) 5 { w , p } 5 1,

{ w , w }D( F ) 5 { w , w } 5 0, (51)

{ p , p }D( w ) 5 { p , p } 5 0

The time evolution is given by an effective Hamiltonian,

QÇ 5 2 {Q, F A}CAB F Ç B 5 {Q, Heff}, CAB 5 { F , F } 2 1
AB

Heff 5 # *0( f(x)) dx (52)

Thus, the gauge (49) is unitary. One can easily see that the equations of

motion (52) reproduce the dynamics of the initial theory of the scalar field
in flat space, but in a curvilinear RF, the coordinates x of which are related

to the coordinates y of the inertial RF by the transformation (49). If f m (x) 5
x m [an analog of the chronological gauge (15) of the finite-dimensional case]

or f m (x) 5 L m
n x n ( L T h L 5 h ), then we get back to the initial theory in an

inertial RF. In this case the effective Hamiltonian (52) takes the familiar form

Heff 5 # *dx 5 # F 1

2
( p 2 1 w 2

, i) 2 F( w ) G dx (53)

What are the physical quantities in the theory (39)? The Dirac criterion admits
only those which commute with all first-class constraints. In our case, that

would mean

{A, f 1 m } ’ 0 (54)

where f 1 is given in (45). Due to the same constraint (45), the physical

quantities, which are functions on the phase space, always can be taken in
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the form A 5 A( y, h ), h 5 ( w , p ). For such functions the condition (54)

results in

{A, f 1 m } 5
- A

- y m 1
- A

- h
a a

m { h , H a } ’ 0 (55)

Multiplying this equation by the nonsingular matrix y, mb gives the follow-
ing relation:

dA

dx m ’ 0 (56)

which is a generalization of the finite-dimensional equation (37). Equation

(56) means that the above criterion admits as physical only functions that

do not depend on space±time.

Similar to the finite-dimensional case, we meet here the following situa-

tion. If we accept the Dirac criterion, then we cannot identify the RI version
of the scalar field theory with the initial formulation in flat space±time even

in the ª chronologicalº gauge. That circumstance indicates that the above

criterion has to be critically reconsidered in the situation under consideration

(for detailed discussion see the next section).

3. RELATIVISTIC PARTICLE THEORY. RI AND TIME
INVERSION

In this section we discuss the theory of a relativistic particle as an

instructive example of an RI system. Such a theory is interesting by itself

and has attracted attention for a long time, in particular due to the fact that

it can serve as a prototype for a string theory (now one can consider it as a

0-brane theory). By this example we are going to study different possibilities
of time-dependent gauge fixing and a relation between reparametrizations

and time-inversion symmetry.

Let us restrict ourselves for simplicity to spinless particles moving in

an external electromagnetic field with the potentials A m 5 (0, A(x)), which

corresponds to the case of a constant magnetic field. The theory of such a

particle is described by the action(9)

S 5 # F 2 m ! 1 2 (xÇ 2) 1 gxÇ A G dt (57)

where x 5 (xi) are spatial coordinates of some inertial reference frame and

t is the time of the same frame, g is the algebraic charge of the particle, and

m is its mass. The action (57) is nonsingular, so that Hamiltonization and
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quantization can be done directly. The three-dimensional momentum vector

p is defined by

p 5
- L

- xÇ
5

mxÇ

! 1 2 (xÇ 2)
1 gA, p 5 ( p i) (58)

The classical equations of motion are

h Ç 5 { h , v }, h 5 (x, p ), v 5 ! m2 1 ( p 2 gA)2 (59)

They describe the motion of a particle with charge g in a constant magnetic

field. Going over to the quantum theory, we get the commutation relations

between the operators xÃ, p Ã: [xÃi, p Ãk] 5 i{xi, p k} 5 i d i
k. In the coordinate

representation xÃis a multiplication operator, whereas p Ã5 2 i - / - x. The state
vectors c obey the SchroÈ dinger equation

i
- c
- t

5 v Ãc , v Ã5 ! m2 1 (i ¹ 1 gA)2 (60)

The quantum theory constructed in this way describes only one particle with

charge g. Such a theory is not equivalent to a theory based on the Klein±

Gordon equation. Indeed, the latter describes states of charged particles with
positive and negative energies, or states of particles and antiparticles [charge

( 2 g)] with positive energies.

Let us consider an RI formulation of the system in question. The corres-

ponding action has the form

S 5 # [ 2 m ! xÇ 2 2 gxÇ m A m ] d t , xÇ m 5
dx m

d t
(61)

where now four x m 5 (x0, x) are dynamical variables dependent on a new

time t . The action (61), similar to the one (1), obeys the reparametrization

gauge symmetry (2). Hamiltonization and quantization of the theory is more

complicated than in the previous case. Let p m be the generalized momenta

related to the variables x m ,

p m 5
- L

- xÇ m
5 2

mxÇ m

! xÇ 2
2 gA m (62)

Then there is a constraint ( p 1 gA)2 5 m2, which can be written in the

following equivalent form, which is convenient for our purposes:

f 1 5 p 0 1 z v 5 0, z 5 2 sign p 0 (63)

One can express from (62) three velocities xÇ as well as the sign of xÇ 0 in
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terms of the coordinates, momenta, and one inexpressible velocity, which

here is l 5 ) xÇ 0 ) ,
xÇ 5 l v 2 1( p 2 gA), sign xÇ 0 5 z , ! xÇ 2 5 m l v 2 1 (64)

Thus, one can construct the total Hamiltonian H(1) by substituting (64) in the
expression p m xÇ m 2 L,

H(1) 5 l z f 1 (65)

where l is a Lagrange multiplier subject, however, to the condition of positi-

vity. The Hamiltonian equations of motion of the form

xÇ m 5 {x m , H(1)}, p Ç m 5 { p m , H(1)}, f 1 5 0, l $ 0 (66)

are equivalent to the Lagrangian ones. No secondary constraints arise from

the consistency conditions and l remains undetermined. This indicates that

we are dealing with a gauge theory. The total Hamiltonian is proportional to

the constraints, as one can expect for an RI theory. Below we discuss some
possible gauges and quantization in these gauges.

First, let us consider the case of a neutral (g 5 0) particles. In this case

the action (61) is invariant under the time inversion t ® 2 t . Since the gauge

symmetry in the case under consideration is related to the invariance of the

action under the changes of the variables t , two possibilities appear, namely,
to include or not to include the above discrete symmetry in the gauge group

together with continuous reparametrizations. Let us first study the former

possibility and include the time inversion in the gauge group. Then the gauge

conditions have to fix the gauge freedom which corresponds to both kind of

symmetries, namely, to fix the variable l 5 ) xÇ 0 ) , which is related to the

reparametrizations, and to fix the variable z 5 sign xÇ 0, which is related to
the time inversion. To this end we may select the chronological gauge of

the form

f 2 5 x0 2 t 5 0 (67)

The consistency condition f Ç 2 5 0 leads on the constraint surface to the

equation

f Ç 2 5
- f 2

- t
1 { f 2, H(1)} 5 2 1 1 l z 5 0 (68)

which results in the condition z l 5 1. Remembering that l $ 0, we get

z 5 1, l 5 1. That reduces the constraint surface to the form f a 5 0, a 5
1, 2,

f 1 5 p 0 1 v , f 2 5 x0 2 t (69)

It is easy to calculate that { f a , f b} 5 antidiag( 2 1, 1) and Cab 5 2 { f a ,
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f b}, Cab{ f b , f c} 5 d ac. One can select h 5 (x, p ) as independent variables.

Their Dirac brackets coincide with the Poisson ones,

{ h , h 8}D 5 { h , h 8} (70)

The quantum operators h Ï obey equation (19), which in this particular case

takes the form

h ÏÇ 5 2 { h , f a} Cab
- f b

- t Z h 5 h
Ï

5 { h , v } ) h 5 h
Ï 5 2 i[ h Ï , v Ï ] (71)

[ h Ï , h Ï 8] 5 i{ h , h 8}

Thus, the evolution is unitary and is governed by the effective Hamiltonian

v , (59). One can consider time-independent SchroÈ dinger operators h Ã5 e 2 i v Ï t h Ï

( t )ei v Ï t and time-dependent state vectors. The operators h Ãobey the same

commutation relations (71) and can be realized as in the non-reparametriza-

tion-invariant case. Thus, one gets the SchroÈ dinger equation (60) if one
identifies t with t.

Suppose we do not include the time inversion in the gauge group. That

is especially natural when g Þ 0, A m Þ 0 because in this case the time

inversion is no longer a symmetry of the action. Thus, one may now consider

the more general situation of a charged particle moving in an external magnetic

field. Under the above supposition, the condition (67) is no longer a gauge;
it fixes not only the reparametrization gauge freedom (fixes l ), but it also

fixes the variable z , which is now physical. A possible gauge condition has

the form (10)

f 2 5 x0 2 z t 5 0 (72)

The consistency condition f Ç 2 5 0 leads to the equation

f Ç 2 5
- f 2

- t
1 { f 2, H(1]} 5 2 z 1 l z 5 0 (73)

which fixes only l 5 1 and retains z as a physical variable. Trajectories

with z 5 1 1 correspond to particles, while trajectories with z 5 2 1 to

antiparticles.(10) Two second-class constraints

f 1 5 p 0 1 z v , f 2 5 x0 2 z t (74)

form the same algebra as in the previous case. One has only to add the

relation { z , h }D 5 0 to the Dirac brackets (70). However, we get here an
additional operator z Ã, which has to be realized in the Hilbert space of state

vectors. We assume the operator z Ãto have the eigenvalues z 5 6 1 by analogy

with the classical theory. Such an operator can be realized in a Hilbert space

whose elements are two-component columns
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C 5 1 C 1(x)

C 2(x) 2 (75)

if we chose the operator z Ãas the matrix z Ã5 diag(1, 2 1). The time-independent

operators h Ãcan be realized as follows:

xÃi 5 x iI, p Ãj 5 2 i - jI (76)

where I is a unit 2 3 2 matrix. The time evolution of the state vectors is
described by the SchroÈ dinger equation

i
- C
- t

5 v ÃC (77)

where v Ãis given by (60). Equation (77) differs from the similar equation

(60) due to the structure of the Hilbert space, which now allows one to

describe states for both particles and antiparticles.
As an example of gauge conditions which lead to the description from

the point of view some noninertial reference frames we consider here the

gauge (a 5 const)

f 2 5 x0 1
p 0

m
t 1 a 5 0 (78)

in the case when the time inversion is not included in the gauge group and

the gauge

f 2 5 x0 2 ) p 0 )
m

t 1 a 5 0 (79)

when it does.

One can demonstrate first that the gauge condition (78) corresponds (at

any a) to the proper-time gauge xÇ 2 5 1 in the Lagrangian formulation. Indeed

the consistency condition

f Ç 2 5
- f 2

- t
1 { f 2, H(1)} 5

p 0

m
1 l z 5 0 (80)

defines l 5 ) p 0 ) /m. Remembering the last relation (64) and the constraint

(63), we can see that (78) at any a is equivalent to the condition xÇ 2 5 1. Thus,

(78) may be called the proper-time gauge in the Hamiltonian formulation. The

proper-time gauge, similar to the chronological gauge (72), does not fix the
variable z , and leaves the possibility to describe particles and antiparticles

at the same time. The gauge condition (79), similar to (67), fixes the variables

z ; thus it is acceptable only when the time inversion (78) is included in the

gauge group.
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The constraint algebra in both gauges (72) and (78) is the same, and

the commutation relations and the realization for the independent operators

are also the same; however, the effective Hamiltonian in the proper-time
gauge is different,

Heff 5
v 2

2m
(81)

Thus, the SchroÈ dinger equation has the form

i
- C
- t

5
v Ã2

2m
C (82)

One can establish a formal relation between the gauges (72) and (78). Namely,

one can present a canonical transformation which connects both gauges on

the classical level. The generating function of a such transformation has

the form

W 5 x m p 8m 1 t ) p 80 ) 2 t
p 82

0

2m
(83)

if the phase space variables without the primes are related to the chronological

gauge (72) and the primed ones to the proper-time gauge (78). The transforma-

tion does not change the variables x i and p m . It changes only x0, x80 5 x0 2
z t 2 ( p 0/m) t . Thus, it transforms the constraint surface of the first gauge

into the one of the second gauge. One can also see that this transformation

connects both Hamiltonians

H 5 H 8 1
- W

- t
5

p 82
0

2m
1 ) p 80 ) 2

p 82
0

2m
5 ) p 80 ) 5 ) p 0 ) 5 v (84)

On the quantum level the state vectors in both gauges are connected by
means of a quantum canonical transformation

C 5 e 2 iWÃC 8, WÃ5 t v Ã2 t
v Ã2

2m
(85)

In the spirit of the interpretation given in Section 3 we may say that

the chronological gauges (67) and (72) lead to the inertial RF, whereas the
proper-time gauges (78) and (79) correspond to the description from the point

of view of noninertial (at A Þ 0) RF. A formal possibility to connect these

two gauges by means of a canonical transformation does not mean their

physical equivalence since such a transformation depends explicitly on time.
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4. POSSIBLE INTERPRETATION

Results of the previous sections may be summarized in the following
interpretation. Let us turn first to the non-RI actions (2.7), (2.38), and (3.1).

It is natural to believe that such actions give descriptions of the corresponding

physical systems in certain RF. For example, actions (2.38) and (3.1) provide

a description from the point of view of an inertial RF with a Cartesian base.

Constructing RI versions of the above-mentioned actions, we see that the

possibility appears to describe the same physical system from the point of
view of a wider class of RF. The theories become gauge ones, and contain

additional nonphysical variables. The corresponding gauge symmetry RI leads

always to the zero Hamiltonian phenomenon. To introduce a dynamics we

fix a gauge by means of supplementary conditions which depend on time

(or space±time variables) explicitly. It turns out that such a gauge fixing

looks literally like a certain choice of RF. In particular, the chronological
gauges correspond to the RF in which initial non-RI actions are formulated.

More complicated gauges reproduce in general noninertial curvilinear RF.

Based on experience derived from the simple example consideration we

believe that any fixing of the reparametrization gauge freedom always corres-

ponds to a certain choice of the space±time RF. Here we have especially
emphasized the origin of the RF which is fixed. The point is that the fixing

of the gauge freedom of any kind can be treated as a choice of some RF. In

this sense the reparametrization symmetry is similar to gauge symmetries of

a different nature, let us call them internal gauge symmetries (one may define

the latter symmetries as ones which do not involve the space±time coordinate

transformations). The principal distinction between the reparametrizations
and internal gauge symmetries is related to the distinction between the corres-

ponding RF. Whereas one believes that the RF for the internal gauge symmet-

ries may not be realized physically (at least until now), the choice of RF to

measure space±time coordinates may be physically realized. If in the former

case the physical quantities do not depend on the choice of the gauge, in the

latter case this may not be true. To describe local physical quantities it is
natural to use space-time-dependent functions which depend explicitly on

the choice of RF and are transformed in a certain way under the RF change.

Thus, we have to admit gauge-noninvariant objects to describe physics. As

is known (4,5) when the gauge transformations do not involve a transformation

of space±time coordinates, gauge-invariant functions on the phase space have

to commute with first-class constraints on the mass shell (Dirac criterion).
The previous reasoning means that the ª localº point of view, which is in fact

advocated here, abrogates the Dirac’ s criterion with respect to the first-class

constraints which generate the reparametrizations. Rejection of the Dirac

criterion in the case of the reparametrization gauge symmetry thus admits any
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functions (which are physical with respect to the internal gauge symmetries) as

physical ones. Their choice is dictated by concrete conditions of the problem.

Let us, for example, return to the theory of the scalar field studied in Section

2. Let us have a Lorentz tensor in the initial non-RI formulation, say the

vector w , m (x). The question is: What kind of physical quantity corresponds

to it in the RI formulation? One may present two naturally constructed

quantities, the general coordinate vector w , m (x) and the scalar a m
a w , m (x). Both

coincide with the initial physical quantity in the chronological gauge (in the

inertial RF). In the literature one often meets arguments in favor of the latter

choice (see, for example, ref. 11).

We know that gauges which fix an internal gauge symmetry can always

be selected in time (space±time)-independent form (canonical gauges). Such

gauges then may be related by means of a time-independent canonical trans-

formation.(5) In such a way, a formal equivalence between descriptions in

different gauges may be established. As we have seen from the examples in

Sections 2 and 3, the time-dependent gauges in RI theories may also be

connected by means of canonical transformations (such a possibility certainly

follows from general theorems(5)). However, such transformations necessarily

depend on time (space±time variables). Thus, in this case a formal possibility

to connect different gauges does not mean their literal physical equivalence.

The canonical transformations in such a case establish only a relation between

descriptions of one and the same system in different RF.

5. RI IN GENERAL AND THE ZERO-HAMILTONIAN
PHENOMENON

Above we have considered several examples of RI systems. The explicit

form of the corresponding GT depends on the structure of the theory [compare

(2) and (4)]. At the same time, in all known examples the total Hamiltonian

vanishes on the constraint surface of the theory. Is it possible to discover

some specific structure of RST in general and a relation of the latter with

the zero-Hamiltonian phenomenon? Below we discuss this problem and pre-

sent such a relation.

Let us have a theory with a finite number of degrees of freedom which

is described by an action (q 5 qa, a 5 1, . . . , D, are generalized coordinates

and t is time)

S 5 # L(q, q, t) dt (86)
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Consider a transformation in the space of trajectories qa(t),

qa(t) ® q8a(t) 5 Ga
t (q) (87)

where Ga
t (q) are functionals on qa(t) depending parametrically on time. We

will call (87) a symmetry transformation (ST) of the theory if the Lagrangian
function L(q, qÇ , t) is changed under such a transformation only by a total

derivative of some function,

L8(q, qÇ , t) 5 L(G t(q), GÇ t(q), t) 5 L(q, qÇ , t) 1
dF

dt
(88)

One can see that the Lagrangians L(q, qÇ , t) and L8(q, qÇ , t) have the same

extremals. That can be regarded as an argument in favor of the proposed

definition of the ST.

The ST can be discrete, continuous global, or gauge. Continuous global

ST are parametrized by a set of parameters e a , a 5 1, . . . , r. It is convenient
to define the point e a 5 0 as the one that corresponds to the identical

transformation. In this case (87) can be presented in the form

q8a (t) 5 Ga
t (q ) e ), Ga

t (q ) 0) 5 qa(t) (89)

where the e dependence is indicated explicitly. The infinitesimal form of a

global continuous ST is

q8a(t) 5 qa(t) 1 d qa(t), d qa(t) 5 r a
a (t) e a , r a

a (t) 5
- Ga

t (q ) e )

- e a Z e 5 0

(90)

where r a
a (t) are the generators of the transformations. Continuous ST are GT

(or local ST) if they are parametrized by some arbitrary functions of time

(or in the case of field theories by functions of space±time variables). They

can be presented in the form (89), where, however, Ga
t (q ) e ) may depend not

only on e , but on its derivatives over time. In this case

d qa (t) 5 # Ra
a (t, t8) e a (t8) dt8, Ra

a (t, t8) 5
d Ga

t (q ) e )

d e a (t8) Z e 5 0

(91)

As it was demonstrated in ref. 5, the generators Ra
a (t, t8) are local in time (in

the case of ordinary bosonic variables), i.e., they have the following structure:

Ra
a (t, t8) 5 o

M

k 5 0

r a
a (k)(t) - k

t d (t 2 t8) (92)
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where M is finite. Thus, one can write in this case

d qa (t) 5 o
M

k 5 0

r a
a (k)(t) e

(k)
a (t), e (k)

a (t) 5
d k e a(t)

dt k (93)

The presence of the r-parameter continuous global ST indicates that

there exist r conserved charges. Indeed, in this case d L 5 (d/dt) d F, which

is an infinitesimal form of (88). The variations d L and d F can be represented
as follows:

d L 5
d S

d qa d qa 1
d

dt 1 - L

- qÇ
d qa 2 5 F d S

d qa r a
a 1

d

dt 1 - L

- qÇ a
r a

a 2 G e a , d F 5 f a e a

(94)

where

d S

d qa 5
- L

- qa 2
d

dt 1 - L

- qÇ a 2
so that d S/ d qa 5 0 are the Euler±Lagrange equations of motion. Thus, we get

dQ a

dt
5 2 r a

a
d S

d qa, Q a 5
- L

- qÇ a
r a

a 2 f a (95)

and therefore Q a are the above-mentioned conserved charges. An analogous
statement is valid for GT as well. Moreover, in this case one can make

some conclusions about the structure of the corresponding conserved charges.

Below we formulate and prove some statements which are useful for our

purposes.

Let an action obey a gauge ST. In the infinitesimal form this results in
the condition

d L 5
d S

d qa d qa 1
d

dt 1 - L

- qÇ a
d qa 2 5

d

dt
d F (96)

where d qa are given by (93) and d F is a function. Similarly to the derivation

of (94), (95), this implies the conservation law

dQ

dt
5 2

d S

d qa d qa, Q 5 1 - L

- qÇ a
d qa 2 d F 2 (97)

The conserved charge Q may be represented in the form

Q 5 o
M8

k 5 0

Q a (k)(t) e
(k)
a (t) (98)
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Substituting (93) and (98) into (97), we get

o
M8

k 5 0

[QÇ a (k) e
(k)
a (t) 1 Q a (k) e

(k 1 1)
a (t)] 5 2

d S

d qa o
M

k 5 0

r a
a (k) e

(k)
a (t) (99)

It is clear that M 8 5 M 2 1. Due to the arbitrariness of e a (t), one can consider
the derivatives e (k)

a (t) as independent arbitrary functions and compare the

terms on the left- and right-hand sides of (99) with the same e (k)
a (t). Thus

one gets

Q a (M 2 1) 5 2
d S

d qa r a
a (M), QÇ a (M 2 1) 1 Q a (M 2 2) 5 2

d S

d qa r a
a (M 2 1), . . .

QÇ a (k) 1 Q a (k 2 1) 5 2
d S

d qa r a
a (k), . . . (100)

It follows from the system (100) that

Q a (k) 5 L a
a (k)

d S

d qa, or Q 5 L a d S

d qa , L a 5 o
M 2 1

k 5 0

e (k)
a (t) L a

a (k)

(101)

where L a
a (k) contains operators of differentiation in time up to the order

(M 2 k 2 1). Thus, one may make the following statement (which was in

fact known to Noether(12)):

The conserved charge (98) which corresponds to any GT and its compo-
nents Q a (k) vanish on the equations of motion.

Let a global ST be the reduction of a GT to constant values of the

parameters e a (t). In this case the generators r a
ga (t) from equation (90) are

just r a
a (0) (t) from equation (93), and therefore d qa(t) 5 r a

a (0)(t) e a . The corres-

ponding conserved charges Q a from (95) coincide with Q a (0) from (98) and

vanish on the equation of motion according to (101). The inverse statement
is also valid, namely:

If some global continuous ST of an action d qa(t) 5 r a(t) e generates a
conserved charge which vanishes on the equation of motion, then this action
obeys a gauge symmetry.

Let us prove this. Similar to (94), one can get

- L

- qa r a 1
- L

- qÇ a
r Ç a 5

d

dt
f (102)
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We can use this equation to write the following relation:

- L

- qa r a e (t) 1
- L

- qÇ a
d

dt
[ r a e (t)] 5

d

dt
[ f e (t)] 1 e Ç (t)Q(0) (103)

where Q(0) 5 ( - L/ - qÇ a) r a 2 f is the conserved charge related to the global
continuous ST [see (95)] and e (t) is an arbitrary function of t. Let this charge

vanish on the equations of motion, that is,

Q(0) 5 L a
(0)

d S

d qa (104)

where L a
(0) may contain operators of differentiation with respect to time up

to a finite order. Thus, the last term on the right-hand side of (103) has the

form e Ç (t) L a
(0) d S/ d qa. One can always write this term in the different form

e Ç (t) L a
(0)

d S

d qa 5 2
d S

d qa L a e Ç (t) 1
d w
dt

(105)

where L a is an operator symmetric to L a
(0) and w is some function. On the

other hand,

d S

d qa L a e Ç (t) 5
- L

- qa L a e Ç (t) 1
- L

- qÇ a
d

dt
[ L a e Ç (t)] 2

d

dt F - L

- qÇ a
L a e Ç (t) G (106)

Gathering (103), (105), and (106), we get

d L 5
- L

- qa d qa (t) 1
- L

- qÇ a d qÇ a(t) 5
d

dt F f e (t) 1 w 1
- L

- qÇ a
L a e Ç (t) G

where d qa(t) is a GT,

d qa(t) 5 r a e (t) 1 L a e Ç (t) (107)

Based on the two statements proved above we may define what can be called
reparametrization ST in general. To this end let us first discover what is a

global representative of such a symmetry. One can remember that in all known

examples of finite-dimensional systems the existence of reparametrization

invariance leads to the zero-Hamiltonian phenomenon. More exactly, the total

Hamiltonian(4,5) appears to be proportional to constraints of the theory, or it

vanishes on the equations of motion. Such a Hamiltonian can be derived
from the expression for the Lagrangian energy if one replaces there all the

primary expressible velocities as functions on phase space variables and

denotes the primary inexpressible velocities by l , which then play the role

of Lagrange multipliers. Thus, in this case one can write
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% 5
- L

- qÇ a
qÇ a 2 L 5 L a

(0)
d S

d qa (108)

Another observation is that in all known examples where RI takes place, the

corresponding Lagrangians do not depend explicitly on time. Thus, we have

the conservation law

d%

dt
5 2 qÇ a

d S

d qa (109)

On the other hand, one can interpret the energy % as a conserved charge
related to the global ST, which are translations in time, qa(t) ® qa(t 1 e ),

or in the infinitesimal form

d qa(t) 5 qÇ a(t) e (110)

Indeed, in this case

d L 5
- L

- qa qÇ a e 1
- L

- qÇ a
qÈ a e 5 e

dL

dt
(111)

so that (110) is a symmetry and, at the same time, (109) follows also from

(111). Taking all this into account, it is natural to regard translations in time

as global representatives of the reparametrization GT. Then one can define

the latter GT as a possible extension of the translations in time to GT in the
manner which was used in the proof of the inverse statement. Thus, such

GT have the form (107) with r a 5 qÇ a,

d qa(t) 5 qÇ a (t) e (t) 1 L a e Ç (t) (112)

where the operators L a are defined by the explicit form of the Lagrangian

of the theory [see for example the transformations (2) and (4)].

Considering the above finite-dimensional case, we have seen that the

conserved charge Q of (98) related to any GT and all its components Q a ( k )

vanish on the equations of motion. In particular, the components Q a (0), which
are the conserved charges related to the corresponding global ST (global

representatives of the GT), with e a (t) 5 e a 5 const, also vanish on the

equations of motion. However, such a conclusion may be wrong in the case

of field theory.(13) As an example, let us take electrodynamics coupled to a

scalar field w (x),

S 5 # +d D 1 1x,

+ 5 2
1

4
F m n F

m n 1 ( - m 1 ieA m ) w ² ( - m 2 ieA m ) w 2 V( w ² w ) (113)
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The conserved charge [an analog of (95)], related to the GT d A m (x) 5 - m e (x),

d w (x) 5 ie w (x) e (x), d w ² (x) 5 2 ie ² (x) e (x), where e (x) are parameters of the

GT, is

Q 5 # 1 - L

- AÇ m
d A m 1

- L

- w Ç
d w 1

- L

- w Ç ² d w ² 2 d Dx

5 # [F0k - k e (x) 2 j0 e (x)] d Dx (114)

j0 5 w ² ( - 0 2 ieA0) w 2 w ( - 0 1 ieA0) w ² (115)

This expression can be transformed by the equation of motion - k F0k 1
iej0 5 0 to the form

Q 5 # - k[F0k e (x)] d Dx (116)

In the case of GT with e (x) decreasing rapidly enough in the limit ) x ) ® ` ,

the charge (116) is zero. In the case of global ST with e (t) 5 e 5 const, we have

Q 5 e # - kF0k d D x 5 2 ie e # j0 d Dx (117)

This expression may differ from zero. In the Coulomb phase F0k behaves at
large r as r 2 (D 2 1), so that the integral in (117) is proportional to the total

electrical charge of the system, which is in general not zero. However, if a

spontaneous symmetry breaking takes place (Higgs phase) the vector field

becomes massive and F0k decreases exponentially, resulting in Q 5 0. (The

total charge of any state is zero.)
One meets a similar situation in the theory of gravity. Let us select the

action of the gravitational field of the form (first proposed by Dirac(14); for

a detailed treatment see refs. 9 and 5)

S 5 # Ld 4x, L 5 A 1 - i q
i (118)

where

A 5 ! 2 g00g(3) F zik

4
(eil ekm 2 eikelm) zlm 2

R(3)

g00 G ,

g(3) 5 ) gik) , eikgkl 5 d i
l

zik 5 gÇ ik 2 g0i,k 2 g0k, i 1 2 g l
ikg0l, qi 5 ! 2 g(3)glm,k (eilekm 2 eikelm)

and g l
ik and R(3) are the Christoffel symbols and the scalar curvature constructed
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for the three-dimensional metric gik, respectively. This action is equivalent

to the Einstein±Hilbert one under certain assumptions about the global struc-

ture of the theory. The Lagrangian L contains neither higher (second) order
derivatives of the metric, nor velocities gÇ 0 m . The variation of L under the GT

(6) has the form d L 5 - m [L e m (x)]. The corresponding conserved charge is

Q 5 # 1 - L

- gÇ ik
d gik 2 L e 0 2 d 3x (119)

If e m (x) ® 0 when ) x ) ® ` , then one can see that it vanishes on the equations
of motion. For example, if e i(x) [ 0

Q 5 # e 0 F g m n
d S

d g m n
1 g00

d S

d g00 G d 3x (120)

In the case of e 0(x) 5 e 0 5 const, e i (x) [ 0, the charge (119) is proportional

to the total energy and has the form

Q 5 2 e 0 # - i q
i d 3x (121)

The integral on the right-hand side of (121) is generally nonzero. In particular,

in an asymptotically flat space(15) for a system with the total mass M

gik 5 2 d i
k 1 1 1

M

8 p r 2 1 O 1 1

r 2 2 (122)

Then Q 5 e 0M is not zero. One can remark, considering, for example, the
theory of gravity, that in spite of the fact that four-dimensional divergence

terms in the Lagrangian do not affect the form of the equations of motion,

they can affect the form of the corresponding conserved charges. That may

serve as an additional argument in favor of a certain form of the selected

Lagrangian.
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